The propagation of a cylindrical (or spherical) shock wave in an ideal gas with azimuthal magnetic field and with or without self-gravitational effects is investigated. The shock wave is driven out by a piston moving with time according to power law. The initial density and the initial magnetic field of the ambient medium are assumed to be varying and obeying power laws. Solutions are obtained, when the flow between the shock and the piston is isothermal. The gas is assumed to have infinite electrical conductivity. The shock wave moves with variable velocity, and the total energy of the wave is nonconstant. The effects of variation of the piston velocity exponent (i.e., variation of the initial density exponent), the initial magnetic field exponent, the gravitational parameter, and the Alfven-Mach number on the flow field are obtained. It is investigated that the self-gravitation reduces the effects of the magnetic field. A comparison is also made between gravitating and nongravitating cases.
Loading....